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1 Introduction 

Our proposal to the Air Force Office of Scientific Research (AFOSR), entitled "The Application of Quantified 
Linear Programs to Scheduling problems in Real-Time Systems" was approved for the calendar year January 2002 
to December 2002. In [Subb], we formulate a flow-shop scheduling problem as a Totally Clairvoyant Scheduling 
problem in the E-T-C scheduling framework [Sub02]. We provide polynomial time algorithms for the case in 
which the constraints between jobs are strict diff'erence constraints, also called "standard constraints". We also 
show that a Performance Metric Optimization problem is NP-Hard. 

[Suba] represents an off'shoot of the main thrust of our work. While working on short refutations for Totally 
Clairvoyant Scheduling systems, it occurred to us that tree-like resolution refutations of 2SAT formulas could be 
determined in polynomial time. 

We have recently proposed the addition of optimization functions to Clairvoyant Scheduling, as well as parallel 
strategies for large scale problems. This proposal is currently under consideration for funding by AFOSR. 
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Abstract 

Traditional scheduling models assume that the execution time of a job in a periodic job-set is constant in 
every instance of its execution. This assumption does not hold in real-time systems wherein job execution time 
is known to vary. A second feature of traditional models is their lack of expressiveness, in that constraints more 
complex than precedence constraints (for instance, relative timing constraints) cannot be modeled. Thirdly, 
the schedulability of a real-time system depends upon the degree of clairvoyance afforded to the dispatcher. In 
this paper, we shall discuss Totally Clairvoyant Scheduling, as modeled within the E-T-C scheduling framework. 
We show that this instantiation of the scheduling framework captures the central issues in a real-time flow-shop 
scheduling problem and design a polynomial time sequential algorithm for the same. We also introduce an 
error-minimizing performance metric called Violation Degree and establish that optimizing this metric in a 
Totally Clairvoyant Scheduling System is NP-Hard. 

1    Introduction 
Real-time scheduling is concerned with the scheduling of computer jobs which are part of periodic job-sets. 
The execution time of these jobs is known to vary, as we move from one period to the next [AB98]. The 
most common cause for this feature is the presence of input-dependent loops in the program; the time taken 
to execute the loop structure for(i=l to N) will in general be lesser when N=10 than when N=1000. A 
second reason for this variance is the statistical error associated with measuring execution times [LTCA89]. 
Consequently the traditional approach of assuming a fixed execution time for jobs [Pin95a, Bru81] may not be 
appropriate in real-time situations. Traditional models suffer from a second drawback, viz. the inability to specify 
complex constraints such as relative timing constraints. The literature on deterministic scheduling focuses almost 
exclusively on ready-time, deadline and precedence constraints [GLLK79, SSRB98]. In real-time applications 
though, there is often the necessity to constrain jobs through relationships of the form: Start Job J5 at least 
5 units after Job J2 terminates, StaH Job J5 within 12 units of Job J2 starting. Such relationships cannot be 
captured through precedence graphs, which are by definition. Directed Acyclic Graphs, whereas systems of relative 
timing constraints in real-time scheduling do contain cycles. Relative timing constraints are considered in [HL92], 
but with constant execution times. In this paper, we discuss a scheduling model that addresses both the above 

issues simultaneously. 
An important feature of any scheduling model is the schedulability predicate, i.e. what it means for a job-set 

to be schedulable. In the case of a traditional scheduling model, the obvious definition, viz. all jobs start after 
their ready-times and complete before their deadlines, is sufficient. When there are relative constraints between 
the jobs and fixed times can be assumed for job execution, the requirement that the polyhedron defining the 
constraint system is non-empty, suffices. However, when the execution time of a job is an interval and there exist 
relative constraints, the definition of the schedulability predicate is not so obvious. There are two broad categories 
of providing guarantees in the presence of uncertainty, viz. Stochastic and Deterministic. A Stochastic guarantee 
is probabilistic in nature; for instance, in a particular application, we could declare a job-set to be schedulable if 

*Thi.s research i.s supported in part by the Air Force Office of Scientific Research under Grant F49620-02-1-0043 



it meets the imposed constraints for the most likely values of execution times [SS]. These guarantees are useful 
when the underlying distribution of execution time variation is well-understood and a finite (arguably small) 
probability of constraint violation is tolerable. Such guarantees though are always tempered with a probability 
(however small) that the constraints may not hold; consequently, they are not useful in the design of "hard" 
real-time systems in which the error probability must be zero [SR88]. Within the category of deterministic 
guarantees, there are 3 sub-categories, viz. Zero-Clairvoyant (Static), Partially Clairvoyant (Parametric) and 
Totally Clairvoyant (Co-Static) (see [SubOO, Sub02]); the usefulness of each guarantee depends upon the type of 
application involved. In fact, the complexity of the scheduling problem under consideration is determined in large 
part by the type of guarantee that we wish to provide. In this paper, our focus is on providing a polynomial time 
algorithm for Totally Clairvoyant Scheduling in the presence of relative timing constraints. 

The rest of this paper (main body) is organized as follows: Section §2 provides a formal definition of the 
problem under consideration. In Section §3, we analyze the complement of the problem described in Section 
§2 and show that it is equivalent to checking whether a network has a negative cost cycle of a particular form. 
An algorithm for deciding the complement problem is outlined in Section §4; its correctness and complexity are 
also analyzed and we show that it converges in polynomial time. We conclude in Section §5 by summarizing our 
results and discussing problems for future research. Due to space limitations, some of the significant sections of 
this paper have been moved to the Appendix, which is organized as follows: Section §A discusses the design of a 
real-time system for a flow-shop problem; the discussion motivates the necessity for Totally Clairvoyant scheduling. 
Related approaches and models for scheduling under uncertainty are detailed in Section §B. A numerical example 
demonstrating the conversion of a constraint system to a constraint graph is detailed in Section §C. In Section 
§D, we introduce an error-minimizing metric, viz. Violation Degree and show that optimizing this metric over an 
infeasible Totally Clairvoyant Scheduling system is NP-Hard. 

2    Statement of Problem 

In this section, we detail a formal description of the problem under consideration. 

2.1 Job Model 
Assume an infinite time-axis divided into windows of length L, starting at time t = 0. These windows are called 
periods or scheduling windows. There is a set of non-preemptive, ordered jobs, J = {Ji, J2, • • •, -^n} that executes 
in each scheduling window. The occurrences of the same job in different windows are referred to as instances of 
that job. The jobs must execute in the sequence Ji, J2, • • •, J^n- 

2.2 Constraint Model 

The constraints on the jobs are described by System (1): 

A-[s e]'r<b,   e6E, (1) 

where, 

• A is an m X 2.n rational matrix, b is a rational m- vector, (A, b) is called the initial constraint matrbc; 

• E is an axis-parallel hyper-rectangle (aph) which is represented as the product of n closed intervals [li,Ui], 

E= [li,Ui] X [l2,U2\ X ... X [ln,Un\ (2) 

We are modeling the fact that the execution time of a task can take any value in the range [li,Ui] during 
actual execution and is not a fixed constant. Observe that E can be represented as a polyhedral system 
M • e < m, having 2 • n constraints and n variables; 

• s = [si, S2,..., s„] is the start time vector of the jobs, and 



• e = [ei, 62,..., e„] e E is the execution time vector of the jobs. We reiterate that e could be different in 
different windows, i.e. different task instances of the same job could have different execution times (within 
the specified interval [li,Ui] for Jj) in different scheduling windows. However, in any particular period, the 
execution time of the job is fixed and known at the start of the period. The execution time variables are 
referred to as interval variables since they can assume any value within a pre-specified interval; 

Observation 2.1 The jobs are non-preemptive; hence the finish time of job Ji (with start time Si) is Si + Bi. 
The expressive power of the scheduling framework is therefore not enhanced by introducing separate finish time 
variables to model constraints. 

Observation 2.2 The ordering on the jobs is achieved by the constraint set: Si + et < Sj+i Vi = 1,2,..., n - 1; 
these constraints are part of the A matrix. 

The following types of constraints are permitted: 

1. Absolute constraints - These constraints are of the form: Si < a,Si > a or Si + Ci < a, Sj + e, > a, where 
a is some positive integer; these relationships express the requirements on a single job. Note that deadline 
and ready-time constraints of traditional scheduling can be represented as absolute constraints. 

2. Relative constraints - These constraints are of the form: Sj + e^ < Sj + ej + a, s, + e, < Sj + a, Si < Sj + tj + a, 
Si < Sj + a, where a is an arbitrary rational number; these relationships express relative timing (distance) 
constraints between the jobs Ji and J,-. As indicated, the constraints can exist between start or finish times 
of the jobs. 

Assumption 2.1 We assume that all constraints are between pairs of jobs, i.e. there are no absolute constraints. 
Since absolute constraints can be modeled as relative constraints by using an additional job Jo with start time SQ 

and execution time CQ 6 [0,0], our assumption does not limit the expressiveness of the constraint system; however 
it does simplify the analysis, by keeping it uniform, thereby obviating the need for considering absolute and relative 
constraints separately. 

Observation 2.3 The entries in the constraint matrix A belong to the set {0,1, —1}. 

Observation 2.4 In each row of A, the coefficient of the execution time variable tracks the coefficient of the 
corresponding start-time variable. If the coefficient of Si is 0, so is the coefficient of Ci; otherwise the coefficient 
of Ci is either 0 or equal to the coefficient of Si. 

Observation 2.5 At most two start-time variables in any constraint (row) can have non-zero coefficients; if two 
start time variables Si and Sj are non-zero, then Si = —Sj. 

The above constraints have also been called "standard" constraints [GPS95] and are a subset of the monotone 
constraints discussed in [HN94]. We shall be using the terms "standard constraint" and relative constraint 
interchangeably, for the rest of the discussion. 

2.3    Query Model 

In the real-time applications that we consider such as Flow-Shop (see Section §A), it is possible to calculate with 
sufficient accuracy the execution times of the jobs in the current period and a few periods into the future. Totally 
Clairvoyant Scheduling assumes knowledge of the execution time of every job in the job-set, at the start of each 
scheduling window; the execution time vector may be different in different windows. 

We are now in a position to formally state the Totally Clairvoyant schedulability query: 

Q :Ve= [ei,e2,...,e„] GE   3s = [si,S2,...,s„] A-[s e]'^ <b     ? (3) 

The focus of this paper is on the design of a polynomial time procedure to decide Query (3) (henceforth Q). 

Remark 2.1 The combination of the Job Model, Constraint Model and Query Model represents an instance of 
<aph I stem | co-stat> in the E-T-C scheduling framework [Sub02]. 



3    The Complement Problem 

A simple technique to test the schedulability of a Totally Clairvoyant system is as follows: Let eljel,.. .ei be 
the extreme points of E. Substitute each extreme point of E in the constraint system A • [s e]''^ < b and declare 
Q to be true if and only if each of the resulting linear systems (in the start-time variables) is feasible. This is 
because any execution time vector e' S E can be expressed as a convex combination of the extreme points of E 
and thus 

I I 

A-[se'f    =   A-[s  ^^^Ai-aif,   ;^Ai = l,Ai€[0,l] 
i=l i-l 

I I 

=   5]A-[s Aialp,   ^A, = l,Ai6[0,l] 

( '      I 

=   ^Ai-A-[s a-p,   ^Ai = l,Aie[0,l] 

I I 

<   ^Ai-b,  ^Ai = l,Ai€[0,l] 
i=l 1=1 

/ I 

(^Ai)-b,   ^Ai = l,AiG[0,l] 
i=l i=l 

=   b 

Unfortunately such a strategy takes n(2") time, since E has 2" extreme points. In this section, we shall study 
the complement of Query (3); our insights into the complement problem will be used to develop a polynomial 
time algorithm in Section §4. 

Let us rewrite Query (3) as: 

VeGE3sG-s-|-H-e<b, s>0? (4) 

The complement of Query (4) is: 

3eeE Vs G-s + H-e^b, s>0? (5) 

where the notation A • x ^ b means that at least one of the constraints is violated. By applying Farkas' Lemma 
[Sch87], we know that Query (5) is true if and only if: 

3y 3e e E y • G > 0, y • (b - H ■ e) < 0, y > 6 ? (6) 

is true. 
Construct the weighted directed graph Q =< V, F, c > as follows: 

1. Corresponding to each start time variable Si add the vertex Vi to V 

2. Corresponding to each constraint of the form Ip : Si{+ei) < Sj{+ej) + k, add a directed edge of the form 
Vi -^ Vj having cost ci^ = (ej) — (cj) — k. 

Q is called the constraint graph corresponding to the constraint system A • [s e]'^ < b. For an example, see 
Section §C. 

Remark 3.1 In the above construction, it is possible that there exist more than one edge between the same pair 
of vertices; hence, technically, Q is a constraint hyper-graph. 



Definition 3.1 Let p = Vi -^ Vj '^ .. .Vq denote a simple path in Q; the co-static cost of p is calculated as 
follows: 

1. Symbolically add up the costs on all the edges that make up the path p to get an affine function f{p) =r-e-k, 
(r = [n r2 ■■■ Tn]'^,e = [ei 62 ... e„]-^j for suitably chosen r and k. Note that each n belongs to the set 
{0,1,-1}. 

2. Compute a numerical value for f{p) by substituting ei = li,ifri>0 and e, = Ui otherwise. This computed 
value is called the co-static cost of p. In other words, the co-static cost of path p is minE f(p) = minE(r • e — 
k). 

The co-static cost of a cycle is calculated similarly; if the cost of a cycle C in 5 is negative, then C is called a 
negative co-static cycle. 

Theorem 3.1 A Totally Clairvoyant Scheduling Constraint System over a system, of relative constraints has a 
solution if and only if its constraint graph does not have a simple negative co-static cycle. 

Proof: Assume that the constraint graph has a co-static negative cycle Ci defined by {ui -^ V2 -^ ■ ■ ■ -^ t'lt ~* 
vi}; the corresponding set of constraints in the constraint set are: 

S1-S2    <   /i (61,62) 

S2-S3    <    /2(e2,e3) 

Sk-si    <   fk{&k,e.i) 

Now, assume that there exists a solution s to the constraint system. Adding up the inequalities in the above 
system, we get Ve € E 0 < J^j^i fi{ei, 6j+i), where the indexes are modulo k. But we know that Ci is a negative 

co-static cycle; it follows that minggE J2i=i M^i^ ^i+i) < 0; thus, we cannot have Ve € E J2i=i /i(ei, Cj+i) > 0, 
contradicting the hypothesis. 

Now consider the case, where there does not exist a negative co-static cycle. Let Qg =< V,F,cs > denote 
the constraint graph that results from substituting e € E into the constraint system defined by System (1). It 
follows that for all e € E, Qg does not have any negative cost cycles. Hence for each e G E, the corresponding 
constraint system in the start-time variables has a solution (the vector of shortest path distances, see [CLR92]). D 

Our efforts in the next section, will be directed towards detecting the existence of negative co-static cycles 
in the constraint graph corresponding to a Totally Clairvoyant Scheduling Constraint system; this problem is 
henceforth called Pi. 

4    The Shortest Paths Algorithm 

In this section, we propose an algorithm for Pi based on the Floyd-Warshall algorithm for the All-Pairs Shortest 
Path problem. The key idea is to find the path of least co-static cost (shortest path) from each vertex Vi £ V 
to itself. By Theorem (3.1), we know that the constraint system is infeasible if and only if at least one of these 
paths has negative co-static cost. 

We motivate the development of our algorithm by classifying the edges that exist between vertices in the initial 
constraint graph. An edge Vi -^ Vj representing a constraint between jobs Jj and Jj must be one of the following 
types: 

1. Type I: The weight of the edge does not depend upon either Cj or Cj, i.e. the corresponding constraint is 
expressed using only the start times of Jj and Jj. For instance, the edge corresponding to the constraint 
Sj -H 4 < Sj is a Type I edge. 



2. Type II constraint: The weight of the edge depends upon both a and Cj, i.e. the corresponding constraint 
is expressed using only the finish times of J, and Jj. For instance, the edge corresponding to the constraint 
Si + fij + 8 < Sj + Cj is a Type II edge. 

3. Type III constraint: The weight of the edge depends upon ej, but not on BJ, i.e., the corresponding constraint 
is expressed using the finish time of Ji and the start time of Jj. For instance, the edge corresponding to the 
constraint Sj + e, + 25 < Sj is a Type III edge. 

4. Type IV constraint: The weight of the edge depends upon e^, but not on ei, i.e. the corresponding constraint 
is expressed using the start time of J, and the finish time of Jj. For instance, the edge corresponding to the 
constraint Si + 13 < Sj + Cj is a Type IV edge. 

Lemma 4-i There exists at most one non-redundant Vi -^ Vj edge of Type II. 

Proof: Without loss of generality, we assume that i < j, i.e. job Jj occurs in the sequence before job Jj. For 
the sake of contradiction, let us suppose that there exist 2 non-redundant Type II Vi -^ Vj edges; we denote the 
corresponding 2 constraints as ^i : s, + e^ + fci < Sj + Cj and I2 : Si + ei + k2 < SJ + CJ; note that they can be written 
as: h : Si- Sj < Cj -et-ki and h: Sj- Sj < e; - Cj - k^- Let us say that ki > k2, so that -ki < -/cj. We now 
show that I2 can be eliminated from the constraint set without affecting its feasibility. Note that for any fixed 
values of e, and ej, li dominates I2 in the following sense: If h is satisfied, then I2 is also satisfied and hence the 
conjunction h A I2 is satisfied; however if h is not satisfied, then the conjunction li A I2 is not satisfied. In other 
words li <^ h A h and hence I2 can be eliminated from the constraint set, without affecting its schedulability. 
The case in which i > j can be argued in similar fashion. D 

Corollary 4-i  There exists at most one non-redundant Vi '^ Vj edge each of Types I, III and IV. 

Proof: Identical to the proof of Lemma (4.1). O 

Corollary 4.2 The number of non-redundant constraints in the initial constraint matrix which is equal to the 
number of non-redundant edges in the initial constraint graph is at most 0{n?). 

Proof: It follows from Corollary (4.1) that there can exist at most Ai--^ j constraints and hence at most 4 
Vi ~* Vj edges between every pair of vertices Vi,Vj, i,j = 1,2,..., n, i ^ j. Hence the total number of edges in 
the initial constraint graph cannot exceed 0(8 • "''''^~ ') = O(n^). □ 

We extend the taxonomy of edges discussed above to classifying paths in a straightforward way; thus a Type 
I path from vertex Va to vertec vi, is a path whose cost does not depend on either €„ or 65. Paths of Types II, III 
and IV are defined similarly. Algorithm (4.1) returns the type of a path Va "^ Vk-^ ft, given the types of path 
Va '^ Vk and Vk -^ vi,. 

Note that Algorithm (4.1) takes 0(1) time. 
We restrict our attention to paths and cycles of Type I; we shall see that our arguments carry over to paths 

and cycles of other types. As discussed above, there are at most 4 edges Vi ~*- Vj, for any vertex pair {vi,Vj). We 
define 

■Wij (7)    =     symbolic cost of the Type I edge between Vi and Vj, if such an edge exists 

=    00, otherwise. 

Wij {I I), Wij {111) and Wij{IV) are similarly defined. Note that Lemma (4.1) and Corollary (4.1) ensure that 
WijiR) is well-defined for R = I,II,III,IV. By convention, Wii{R) =0, z = l,2,...,n; i? = I,III,IV. Note 
that a path of Type II from a vertex Vi to itself, is actually a Type I path! 

Initialize the n x n x 4 matrix W as follows: W[i][j][i?] = Wij{R),i — 1,2, ...,n; j = 1,2, ...,n R = 
I, II, III, IV. Note that the entries of W are not necessarily numbers; for instance, if there exists a constraint 
of the form Si + ei-\-7 < Sj -\- Cj, then Wij{II) = -Cj -|- Cj - 7. 



Function RETURN-TYPE(i;a -^ Vfc,Ufc -^ Vj) 

1: if (type((wa -^ Vk)) = I) then 
2: if (type((wfc -^ i>t,)) =1) then 
3: return (I) 
4: else 
5: if (type((t;fc -^ Vb)) = II) then 
6: return(IV) 
7: else 
8: if (type((i;fc -^ Vb)) = III) then 
9: return(I) 

10: else 
11: return(IV) 
12: end if 
13: end if 
14: end if 
15: end if 
16: if (type((wa -^ Vk)) = 11) then 
17: if (type((i;fc ~*- «(,)) = I) then 
18: return(III) 
19: else 
20: if (type((-!;fc -^ vi,)) = II) then 
21: if ( j = i ) then 
22: return(I) 
23: else 
24: return(II) 
25: end if 
26: else 
27: if (type((ufe ^ Vb)) = III) then 
28: return(III) 
29: else 
30: if ( j = « ) then 
31: return(I) 
32: else 
33: return(II) 
34: end if 
35: end if 
36: end if 
37: end if 
38: end if 

Algorithm 4.1: Algorithm for determining the type of a path, given the types of its sub-paths 



Function RETURN-TYPE(i;a '^ Vk,Vk -^ Vj) 

1: if (type((i;a -^ Vk)) = III) then 
2 if (type((i;A: -^ «(,)) = I) then 
3 return(III) 
4 else 
5 if (type((i;fc ~> Vi,)) = II) then 
6 ii {i = j ) then 
7 return(I) 
8 else 
9 return(II) 

10 end if 
11 else 
12 if (type((i;A,. -^ vi,)) = III) then 
13 return (III) 
14 else 
15 if ( i = j ) then 
16 return(I) 
17 else 
18 return(II) 
19 end if 
20 end if 
21 end if 
22 end if 
23 end if 
24 if (type((i;a -N-» Vk)) = TV) then 
25 if (type((t)fc ~» «(,)) = I) then 
26 return(I) 
27 else 
28 if (type((i'fc "-> VIJ)) = II) then 
29 return(IV) 
30 else 
31 if (type((ufc -^ Vb)) = III) then 
32 return(I) 
33 else 
34 return(IV) 
35 end if 
36 end if 
37 end if 
38 end if 

Algorithm 4.2: Algorithm for determining the type of a path, given the types of its sub-paths (contd.) 



Let Pij{I) denote the path of Type I from vertex Vi to vertex Vj having the smallest co-static cost, with all 
intermediate vertices in the set {tJi,t;2, • • • ,Wfe}, for some fc > 0; note that p^ = Wij{I). We refer to p^j as the 
shortest Type I Path, from Vi to Vj, with all intermediate vertices in the set {wi, V2, • • • ji'fe}- Further, let c^j{I) 
denote the co-static cost and rfij(/) denote the corresponding symbolic cost; observe that Cy(/) = miriEd^jil) 
and that given dfj(/), c^j(/) can be computed in 0{n) time, through substitution. The quantities, Pij{R), d^j{R) 
and c'lj{R), R = 11,111,IV are defined similarly. 

Let us study the structure of p^j{I). We consider the following two cases. 

1. Vertex Vk is not on pf (/) - In this case, the shortest Type I path from Vi to Vj with all the intermediate 
vertices in {vi,V2,--- ,Vk} is also the shortest Type I path from Vi to Vj with all the intermediate vertices 
in {VUV2,...,Vk-i}, i.e., pf,.(/) = p'^-'il) and 4(/) = d^r^il). 

2. Vertex Vk is on Py(/) - Let us assume that j y^ i, i.e., the path pf^- is not a cycle. Prom Algorithm (4.1), we 
know that one of the following must hold (See Figure (1)): 

V|, 

Figure 1: Shortest path of Type I from v, to Vj through Vk 

(a) Vi ~> Vk is of Type I and Vk ~> Vj is of Type I - Let pi denote the sub-path of p^j from Vi to Vk and 
let p2 denote the sub-path of p^^ from Vk to Vj. We claim that pi must be the shortest Type I path 
from Vi to Vk with all the intermediate vertices in the set {wi, V2, • • • ,Vk-i}, i.e., Pik^{I)- To see this, 
let us assume that pi is not optimal and that there exists another Type I path of smaller co-static 
cost. Clearly this path can be combined with the existing Type I path from Vk to Vj to get a shorter 
Type I path from Vj to Vj, contradicting the optimality of p^j(7). The same argument holds for the 
optimality of the sub-path of p2. This property is called the Optimal Substructure property. We thus 
have, pl^il) = pf,-^ ePfe-' ^"d 4(7) = 4-1 + dl-\ 

(b) Vi '^ Vk is of Type I and 1;^ '^ Vj is of Type III - We argue in a fashion similar to the above case to 
derive: p^.(7) = pf,7^(7) @pt:\lll) and 4(7) = d^^^I) + 47^(777). 

(c) Vi -^ Vk is of Type IV and Vk -^ Vj is of Type I - It follows that pfj(7) = p^^^ ®PkJ^ and d^j{I) = 

d'ik'{m+di-\i). 
(d) Vi -^ Vk is of Type IV and Vk -^ Vj is of Type III - It follows that pfj.(7) = P^T ^ (71/) 0Pfcj (777) and 

d.1^iI)=d.^,7\lV)+d',j\lII). 

Clearly, if Vk is on pfj(7), then 

4(7)    =    mm{dl-\l) + dlj\l),d^,-\l)+dt-\lll), 

dlk'ilV) + dlj\l), d>li:\lV) + dlj\lll)) (7) 

Remark 4-i d^Al) represents the symbolic cost of the shortest Type I path from, Vi to Vj, with all intermediate 
vertices in the set {vi,V2,- ■■ ,Vk}- Thus, the minE operator is used merely to select the appropriate path pairs. In 
particular, in the calculation ofd^j{I), it does not reduce d^j{I) to a real number, although Cij{I) is a real number. 



Putting the 2 cases together, we have 

4(J)    =   nnn{d^r\l),d':^\l) + dlj\l),dl-\l)+4jHlII), 

d^k'ilV) + 4jHl), d1^\lV) + dlj'illl)} (8) 

Now consider the case that the path Pij{I) is a cycle, i.e., j = i. From Algorithm (4.1), we know that one of 
the following must hold: 

1. Vi'^Vk'is of Type I and Vk -^ Vi is of Type I - This case has been handled above. 

2. Vi ^ Vk is of Type II and Vk -^ vi is of Type II, i.e., 4(7) = d\^^{II) + d^-^ {II). 

3. Vi ^ Vk is of Type II and Vk ^ Vi is of Type IV, i.e., 4(7) = d^^'{II) + dlr\lV). 

4. Vi -^ Vk is of Type III and Vk -^ «i is of Type II, i.e., 4(J) = 4-^ (///) + 4,-^ (//). 

5. Vi -> Vk is of Type III and Vk -^ Vi is of Type IV, i.e., 4(7) = d^^\lll) + dl'^IV). 

Note that the case /c = 0, corresponds to the existence (or lack thereof) of a Type I edge from Vi to Vj. Thus, 
the final recurrence relation to calculate the cost of py is: 

d%{I)    =   Wijil), ifk = 0 

=   min{4,-i(7) + 4-1(7), 4,-^(77) + 4-^(77), 4,-^(77) + dli^IV), 

d^,-\iii)+dt-\ii), d':,-\iii)+di-\ivm, ifj=i 
=   mm{4ri(/), 4^-^(7)+ 4-^(7), 4,-^(7)+47^(777), 

d-k'ilV) + 47^(7), 4fc-'(7T/) + 47^(777)}, otherwise (9) 

Using similar analyses, we derive recurrence relations for d^j{R), R = II, 111, IV as follows: 

4(77)    =   Wij{II),ifk = 0 

=    min{4-i(77), 4,-^(77) + 4-^(77), 4,-^(77) + 47^(7^), 

4^-1(777) + 47^^/), d'^^\lll) + 47'(7V)}, otherwise (10) 

4(777)    =   Wij{III),ifk = 0 

=    min{4-i(777), dlirHH) + 47'(^)' 4"'^^) + dtjHUI) 

4fc-i(777) + 47^(7), d^^\lll) + dlj'illl)}, otherwise (11) 

4(7^)    =    Wij{IV),ifk = 0 

=   mm{d^-\lV), d^^'iI) + dlT\lI), dl-\l) + d1j'{IV), 

d^k'ilV) + d'kjHlI), dl^^IV) + 47^(77)}, otherwise (12) 

Algorithm (4.3) summarizes the above discussion on the identification of a negative co-static cycle in the 
constraint graph Q. We note that D^.(7) represents the shortest Type I DJ -^ Vj path with all the intermediate 
vertices in the set {vj, V2,... ,«„}, i.e., it is the shortest Type I t;, -^ Vj path. EvAL-Loop() evaluates the co- 
static cost of each of the diagonal entries and declares the Q to be co-static negative cycle free, if all entries have 
non-negative cost. Further, we need not consider the case j = i separately, in the computations of dfj{R), R = 
77,777, IV. 
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Function DETECT-COSTATIC-NEGATIVE-CYCLE(0) 

li Initialize W. 
2 Set D° = W. 
3 for (fc = 1 to n) do 
4 {We are determining D*'} 
5 for (z = 1 to n) do 
6 for (j = 1 to n) do 
7 Compute Dfj.(7), D*;.(7/), B^j{III), D^j{IV) using the relations (9), (10), (11), (12). 
8 end for 
9 end for 

10 end for 
11 for (i = 1 to n) do 
12 for ( ii = 7 to IV) do 
13 if (EvAL-Loop(DS(i?)) < 0) then 
14 return( true ) 
15 end if 
16 end for 
17 end for 
18 return ( false ) 

Algorithm 4.3: Algorithm for identifying negative co-static cycles in the constraint graph 

4.1 Complexity 

The complexity of Algorithm (4.3) is determined by Step (7 :) within the 0{n^) triple loop. It is easy to see 
that if the symbolic costs are stored in arrays, Step (7 :) can be implemented in 0{ri) time; it follows that Steps 
(1 : —10 :) can be implemented in time at most 0{n^). Step (13 :) takes time at most 0{n) and hence Steps 
(11 : —18 :) take time at most Ol'n?). 

4.2 Dispatching 

Having decided the schedulability query affirmatively, it is the task of the dispatcher to compute the start-time 
vector for each window, given the execution time vector for that window. Let e"^ denote the execution time vector 
in the current scheduling window. Substituting the components of ep in Query (3), we get a linear system of 
difference constraints G • s < b', in the s variables only. Using the techniques from [CLR92], we know that a 
feasible solution to such a system can be computed in 0(Tn • n) time. 

Theorem 4-i The schedulability query for an instance of a co-static scheduling problem with n jobs and m strict 
relative (standard) constraints can be decided in 0{n'^) time, while dispatching can be effected in 0{m ■ n) time. 

5    Conclusions 

In this paper, we demonstrated the expressiveness of E-T-C scheduling framework by using it to model a real-time 
flow shop scheduling problem. The study of clairvoyant scheduling in the literature thus far, had been restricted 
to ready-time and deadline constraints; to the best of our knowledge our work is the first of its kind to consider 
more general relationships in the form of relative timing constraints. Our work establishes that even in the 
presence of these non-trivial constraints, the scheduling and dispatching problems can be decided in polynomial 
time [Oin'^)). 

We also studied the problem of optimizing an error-minimizing metric, viz.. Violation Degree (See Section §D); 
our analysis demonstrated that this optimization problem is NP-Hard. Prom an implementation perspective, the 
algorithms we present are straightforward and use very simple data structures; we are currently engaged in the 
task of studying the performance of the same. 
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Some of the interesting open theoretical questions concern: 

1. The complexity of Totally Clairvoyant Scheduling under partial orders, 

2. The complexity of Totally Clairvoyant Scheduling in the presence of more general constraints such as 
Network Constraints [SubOl], 

3. The exact complexity of Violation Degree, 

4. The complexity of finding a schedule minimizing metrics such as Sum of Start Times and Sum of Completion 
Times. 

6    Acknowledgements 

We thank Vijaya Ramachandran for helpful discussions. 

A    Motivation 

In this section, we show that a practical real-time scheduling problem can be captured as an instance of 
<apli I Stan | co-stat>. 

Flow direction 
tivG Timing Constraints 

Flow direction 

Figure 2: Bounded-buffer Flow Shop 

Figure (2) represents a bounded buffer flow shop. The flow shop consists of n machines Mi through M„ and 
one or more feed-buffers (or feeders). In our example these buffers are A, B and C. Objects to be tooled also 
called jobs are placed in these buffers. The timeline on which the flow shop operates is divided into equal length 
portions called periods. At the start of each period, the job in the each buffer moves to the buffer ahead of it, 
while the job in the first buffer (Buffer A) enters machine Mi. Within the period, the job moves sequentially 
from machine Mj to machine Mj+i, respecting the relative timing constraints (represented by the curved, broken 
arrows) and finally exits at machine M„ before the end of the period. This process is repeated in every period 
with new objects continuously entering the flow at the last buffer ^. Let s, denote the time at which the machine 
Mi begins operating on the current job and let £» denote the time it takes to complete its operation on the 
job. Relative timing constraints are used to capture relationships such as heating and cooling requirements; for 
instance the requirement that the object should wait 5 units of time after exiting machine Mi, before it enters 
machine M2 is represented as: S2 > si -I- ei -I- 5, where S2 is the time at which the object enters M2 and si + ei 
is the time at which it exits Mi. 

'This example is taken from [Pin95b]. 
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Observation A.l Each m.achine in the flow shop has well-defined lower and upper limits on the sizes of the 
jobs it can handle. Let SZH and szui denote the lower and upper bounds on job-size insofar as machine Mi is 
concerned; given these bounds it is straightforward to compute the bounds k and m on ei, i.e. the operation tim.e 
of machine Mi must lie in the interval [li,Ui] for all jobs. We can similarly calculate the execution time range for 
each machine in the flow shop. 

Observation A.2 When a job is loaded into the buffer (Buffer C), its size is known; consequently the operation 
time of each machine on that job, i.e. ei,i = 1,2, ...,n can be calculated, even before it enters machine Mi. In 
other words, the look-ahead factor k is 3. 

DESIGN PROBLEM: Given 

1. Timing constraints between the flow shop machines, 

2. Lower and Upper bounds on the operation time of by each machine. 

Does there exist a valid schedule i.e.,  a schedule that respects the timing constraints, for any- 
job with size sz, where szu < sz < sZui,i = 1,2,... ,n7 

The flow-shop example in this section is easily modeled as a Totally Clairvoyant scheduling problem, with the 
machines acting as the jobs with variable execution times. 

B    Related Work 

In this section, we contrast the Totally Clairvoyant model with two other models in the real-time scheduling 
literature that attempt to model impreciseness, viz. the imprecise computation model and the error-task model. 

[Leu91] discusses some of the earliest formalizations in imprecise computation models. In these models, there is 
a trade-oflF between meeting deadline requirements and the quality of results that are output. Time-Critical tasks 
are permitted to degrade output, as long as temporal constraints are met [LLS+91]. These models are useful in 
applications such as image processing, which require the production of at least a fuzzy frame in time. A sharp 
image produced after the imposed deadline may have little or no value [LLN87, CLK90]. Our model does not 
permit the flexibility of the deadline-quality trade-off, but we consider more general constraints on jobs (relative 
timing constraints). 

The error-task model in [cFL97] describes scheduling algorithms for preemptive, imprecise, composite real-time 
tasks. In this model, input error is explicitly accounted for in the design of solution strategies. Composite tasks 
consist of a chain of component tasks and each component task is composed of a mandatory part and an optional 
part. The key idea is to model imprecise inputs through an increase in the processing time for the mandatory and 
optional parts. Their strategy is similar to ours, in that they model error-rates through processing times, whereas 
we account for resource variability through execution times. Related modeling approaches have been suggested 
in [RCGF97], in which both "soft" and "hard" preemptive tasks are considered. 

Orthogonal approaches to the issues of clairvoyance and speed have been discussed extensively in [KPOO] and 
[KP95]. A number of online scheduling models with and without clairvoyance are discussed in [Sga98] and [FW98]; 
however their primary concern is optimizing performance metrics in the presence of multiple processors, whereas 
we are concerned with checking feasibility in a uniprocessor scheduling problem with relative timing constraints. 

C    Constraint System to Constraint Graph Example 

Exam,ple (1): Consider a job-set J with 4 jobs {Ji, Ja, Js, Ji) having execution times ei € [4,8], 62 G [6,11], 63 € 
[10,13], 64 e [3,9] and the following constraints: 

1. Ji finishes with 12 units of J3 finishing: S4 -I- 64 < S3 -I- 63 4-12 

2. Ji starts no earlier than 18 units of J2 finishing: sa -I- 62 -f 18 < S4 
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3. Js finishes within 31 units of Ji finishing: S3 + 63 < si + ei + 31 

4. Ji finishes before J2 starts: si + Ci < S2 

5. J2 finishes before J3 starts: S2 + 62 < S3 

6. Jz finishes before J4 starts: S3 + £3 < S4 

Putting the constraints in matrix form, we get 

(A) 

0 0 -1 1 0 0 -1 1 
0 1 0 -1 0 1 0 -1 

-1 0 1 0 -1 0 1 0 
1 -1 0 0 1 0 0 0 
0 1 -1 0 0 1 0 0 
0 0 1 -1 0 0 1 0 

• [s 4' < 

12 
-18 
31 

0 
0 
0 

(b) (13) 

The constraint graph Q corresponding to the constraint system A • [s e]'^ < b is given in Figure (3) 

-e,+e, + 31 

V, 

-e,-18 

Figure 3: Conversion from Constraint System to Constraint Graph 

D    Performance Metric Optimization 

Thus far, our focus has been on finding a feasible solution to a Totally Clairvoyant Scheduling system involving 
standard constraints. However, it is often the case, that real-time designers require solutions optimizing certain 
Performance Metrics. Typical Performance Metrics include Makespan, Sum of Start times and Sum of Completion 
times. Definitions of these and other metrics are provided in [Pin95a]. 

The performance metrics mentioned above assume that the constraint system has a feasible schedule and the 
goal is to find a schedule that minimizes a criterion. In traditional scheduling, designers are also interested in 
performance metrics such as Lateness, Tardiness and Unit Penalty, wherein the assumption of feasibility is relaxed 
[Pin95a]. These metrics are concerned with minimizing the degree of infeasibility of the constraint system and are 
called an error-minimizing metrics. If the constraint system is feasible, the minimum value of an error-minimizing 
metric is clearly 0. Error-minimizing performance metrics are also of interest in real-time scheduling; in Section 
§D.l we define a metric called Violation Degree and analyze its complexity. 

D.l    Violation Degree 

Consider a Totally Clairvoyant scheduling system with the imposed constraints described by A • [s e]'''^ < b, as 
discussed in Section §2. We assume that the constraint set is infeasible, from a Totally Clairvoyant perspective. 
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It follows that there exists a set of execution time vectors VE Q E, which violate the constraint system; this set 
is called the Violation Set of the input constraint system. 

Rewrite the input constraint set as: G • s + H ■ e < b. Let e' be any vector in the set VE- It follows that the 
constraint system G • s < b - H • e' is infeasible. Let b^, = b - H • e'; note that the infeasibility of the linear 
system G • s < be' implies that at every start-time vector s, one or more constraints are violated. Let sj denote 
the start-time vector at which the least number of constraints are violated and let n^, denote the number of 
constraints violated by sJ,; sJ and n^, are respectively called the violation vector and the violation degree at the 
execution time vector e'. The Violation Degree (Vd) of the Totally Clairvoyant system A • [s e\'^ < b, e € E is 
defined as the maximum violation degree over all execution time vectors e G VE- We note that for all execution 
time vectors e G E - VE, ng = 0, since the constraint system is satisfied at those execution time vectors. We can 
thus write: 

Vd(A, b, E) = max ng, (14) 
eeVE 

where, 

ng = min (# of constraints violated inG ■ s < bg) 
s 

From an error-minimizing perspective, we wish to know if the Violation Degree of the Constraint System is 
bounded. Accordingly, the query that we are interested in is: 

VdiA,b,E)<k7 (15) 

Note that the defining equation (14) assumes that the set VE is provided; this may not always be a valid 
assumption, since there could be exponentially many violation vectors and it is not clear in such cases, Vg can 
be calculated in polynomial time. To account for this nuance, we define Violation Degree as: 

Vcj(A,b,E) = maxng. (16) 
eGE 

Further, given an execution time vector e' G VE, n-, corresponds to the minimum number of constraints, 
whose removal makes the constraint system feasible. 

The rest of this section is devoted to analyzing the complexity of deciding the bound query representing the 
Violation Degree metric. 

Theorem D.l Query (15) is NP-Hard, even when all jobs have the same execution time, i.e., [0,0] and |E| = 1. 

The proof of Theorem (D.l) requires the development of a few concepts in Network Design. 
Let G =< V,E,c> denote a weighted, directed graph, with vertex set V — {vx,V2, ■■■,««}, edge set E, with 

eij G E representing the edge Vi -^ Vj and cost function c : E ^> Z. The negative feedback arc set problem is 
defined as follows: Is there a set of edges, Ei C E, \Ei\ < k, such that Gi =< V,E - Ei,c> does not have a 
negative cost cycle? 

Lemma D.l The negative feedback arc set problem [NFAS] is NP-complete. 

Proof: [NFAS] is clearly in NP, since an NDTM can guess the set Ei and verify in polynomial time (using the 
Bellman-Ford algorithm, for instance) that the subgraph obtained by the elimination of Ei does not have a neg- 
ative cost cycle. To show NP-Hardness, we reduce the NP-complete Feedback arc set problem [FAS] to [NFAS]. 
An instance of [FAS] is (G =< V,E >, k), where G is an unweighted, directed graph and fc < n G 2"+. The query 
is: Is there a subset Ei C E, \Ei\ < k, such that the subgraph Gi =< V,E - Ei > does not have a cycle? The 
corresponding instance of [NFAS] is (G' =< V, E, c' >, k), where c' assigns -1 to every edge in E. Observe that 
every cycle in G can be identified with a negative cost cycle in G' through the same set of vertices and vice versa. □ 

Lemma D.2 The restriction of [NFAS] to complete graphs, i.e., [NFASCJ, is NP-complete. 
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Proof: Let (G =< V,E,c>,k) be an instance of [NFAS]. The corresponding instance of [NFASC] is 
(C =< V,E',c' >,k), where, E' = {e,j : i,j = 1,2,...,n} and c' is defined as 

Cjj-      =     Cij,  IJ €ij E £/ 

=   M » 0, otherwise, 

such that M + c[j = M, for all e[j e E'. Note that an edge with weight M cannot be part of a negative cost 
cycle. Thus every negative cost cycle in G can be identified with a negative cost cycle in G' through the same 
set of vertices and vice versa. D 

Let {vi,V2, ■■■, Vn] be the vertex labels of a directed, weighted, complete graph G =< V, E, c >; the graph is 
said to be vertex-ordered, if for all edges e^j = Vi ^ Vj, Cij < 0 ii j > i and Cij > 0, if j < i, i.e. all edges from 
a vertex- to vertices with label values higher than its own have negative cost, while edges to vertices with label 
values lower than its own have non-negative cost. 

Lemma D.3 The restriction of [NFASC] to vertex-ordered graphs, i.e. [NFASCVO], is NP-complete. 

Proof: Let (G =< V,E,c >,k) be an instance of [NFASC]. An instance of [NFASCVO] is created using the 
Algorithm (D.l). 

Vj of cost {Cij + 1) 

Function INSTANCE-TRANSFORM(G =< V,E,c>,k) 

1: for  {i = 1 to n)  do 
2: Let Si = {eij,j > i : Cij > 0} 
3: if (|5i| > 0) then 
4: Create a vertex Vn+i 
5: for   (each edge e^ £ Si) do 
6: Add an edge Vi -^ v„+i of cost -1 and an edge Vn+i -^ ' 
7: Delete edge e^ 
8; end for 
9: end if 

10: Let Di = {eij,j <i: Cij < 0} 
11: if (IA! > 0) then 
12: Create a vertex v-i 
13: for   (each edge e^ £ Di) do 
14: Add an edge Vi -^ v^i of cost 1 and an edge v-i ~»- Vj of cost {cij — 1) 
15: Delete edge ey 
16: end for 
17: end if 
18: end for 
19: Let V = VU {n-i :i = l,2,...,n}\J {vn+i :i = 1,2,. ..,n} 
20: if  (no edge exists between Vi,Vj € V) then 
21: Add an edge e^ of cost M, if« > j and -M, iii < j {We are making the new graph complete!} 
22: end if 
23: Let c' be the new cost function as defined above. 
24: Let E' = E\J {new edges are created} — {edges that are deleted} 
25: return(G' =< V',E',c' >,k) 

Algorithm D.l: Algorithm for transforming an instance of [NFASC] to an instance of [NFASCVO] 

We use the convention that — M + a = —M, for any a e Z U {—M,M}. The query associated with the 
[NFASCVO] problem is: Is there a subset of edges, of cardinality k whose deletion, removes all the cycles of cost 
a, for all -M < a < 0? Note that any negative cost cyle in G' having cost strictly greater than —M is also a 
negative cost cycle in G and vice versa. □ 
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We are now ready to prove Theorem (D.l). 
Proof (Theorem (D.l)): Let (G =< V,E,c>,k) be an instance of [NFASCVO]. We construct the Totally 

Clairvoyant Scheduling System A • [s e]'^ < b, e € E, where, 

1. E = ntLi[0,0], 

2. Corresponding to edge e^ = Wj ~> Vj in G, we create a constraint Si - Sj < Cij\ these constraints are part 

of the constraint matrix A • [s e]"^ < b. 

Since G is vertex-ordered, the jobs are ordered, as required by our model. It is straightforward to see that 
every negative cost cycle in G passing through a set of vertices {vi^,Vi^,... ,Vi^},2 < p < n,{ii,i2,--■ ,ip} £ 
{1,2,...,n}, can be identified with a Minimum Unsatisfiable Subset (MUS) through the jobs {sji,Sij,... ,8,^}. 
Thus finding the minimum number of constraints whose removal makes the system feasible is equivalent to finding 
the minimum number of edges in G, whose removal gets rid of all the negative cost cycles. The theorem follows. D 

Remark D. 1 Prom the perspective of Computational Complexity, the decision problem associated with violation 
degree belongs to the class II2 P in the polynomial hierarchy {GJ79]. We also note that if we had chosen to define 
Violation Degree as: 

Vd{A,h,E) =mmns 
eSE 

the same proof would have worked, since the problem, is NP-Hard, even when there is precisely one point in the 
execution tim,e dom,ain "Ei! 
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In this paper, we exploit the graphical structure of 2SAT formulas to show that the shortest 
tree-like resolution refutation of an unsatisfiable 2SAT formula can be determined in polynomial 
time. 
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1.    INTRODUCTION 

The principal goal of research in proof complexity theory, is to obtain non-trivial 
lower bounds on the lengths of proofs of propositional tautologies (alternatively, 
lengths of refutations of contradictions), in non-trivial propositional proof systems. 
Prom a theoretical perspective, the study of proof complexity has fundamental im- 
plications for complexity theory; it was shown in [Cook and Reckhow 1973] that 
there exists a propositional proof system giving rise to short (polynomial-sized) 
proofs for all tautologies if and only if NP=coNP. Thus, obtaining super-polynomial 
lower bounds on the size of proofs of (propositional) tautologies in increasingly 
stronger proof systems leads us in the direction of separating NP from coNP. Note 
that the problem of finding the shortest proof of a tautology is poljmomially equiv- 
alent to the problem of finding the shortest refutation of a contradiction and it is 
the latter problem that we shall be focussing on. Prom a practical perspective, 
Automated Reasoning is an integral part of Real-Time Databases [Bestavros and 
Pay-Wolfe 1997]. Queries to the database are converted into equivalent tautologies 
which in turn are converted to refutation problems; the search for efficient proce- 
dures to find the shortest length resolution refutation of an unsatisfiable formula is 
thus directly connected to practical concerns. 

In this paper, we are concerned with finding the shortest resolution refutations 
of contradictions represented as 2SAT formulas. 

[Haken 1985] describes one of the earliest results showing an exponential lower 
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bound for a proof system; they proved that any refutation of the pigeonhole prin- 
ciple using resolution would generate exponentially many clauses. A similar lower 
bound using Bounded Arithmetic proof systems was proved in [Razborov 1996]. 
Stronger and simpler resolution lower bounds for the pigeonhole principle were de- 
rived in [Beame and Pitassi 1996]. In [Achlioptas et al. 2001], an example of a sharp 
threshold is given; they showed that randomly generated "dense" 3SAT formulas 
satisfying certain properties almost certainly require resolution proofs of exponen- 
tial size. Note that under the assumption that NP ^ co-NP, 3SAT formulas cannot 
have polynomial sized refutations. Exponential lower bounds for prepositional for- 
mulas using cutting plane proof systems were first shown in [Pudlak 1997]; appli- 
cations of cutting plane theory to prepositional proof systems are also discussed in 
[Bockmayr and Eisnbrand ]. Exhaustive surveys of Propositional proof complexity 
can be found in [Beame and Pitassi 1998] and [Urquhart 1995]. In [Clegg et al. 
1996], a new propositional proof system called the Groebner proof system was in- 
troduced; their algorithm can be used to approximate the shortest length proof of 
a tautology and runs in time polynomial in the length of the shortest proof (which 
could be exponential in the size of the input formula). [Ben-Sasson and Wigderson 
2001] relates the length of a resolution refutation to its width, where the width of 
a proof is defined as the maximum number of literals in any clause of the proof. 

Prom an optimization perspective, [Alekhnovich et al. 1998] argues NP-Hardness 
and inapproximability results for a number of proof systems; the weakest proof 
system that they consider is Horn resolution, i.e. resolution as applied to a HornSAT 
formula. Their paper improves on the work in [Iwama 1997], which showed that 
finding the shortest resolution refutation to an arbitrary CNF formula is NP-Hard. 
[Iwama and Miyano 1995] considered a fragment of resolution called Read-Once 
Resolution and showed that the problem of checking whether a CNF formula has a 
Read-Once Resolution Refutation is NP-complete. 

Note that the resolution refutation of an unsatisfiable formula can be either 
tree-like or dag-like (See Section §2). In this paper, we show that the shortest tree- 
like resolution refutation of an unsatisfiable 2SAT formula can be determined in 
polynomial time. Our work has the effect of classifying natural classes of Boolean 
formulas in the following resolution refutation complexity hierarchy: 

(1) 3SAT formulas - There exist formulas, for instance, the formula encoding the 
pigeon-hole principle, that do not have short resolution refutations in either the 
tree-like or the dag-like proof systems [Haken 1985]. 

(2) HornSAT formulas - A short resolution refutation exists for both tree-like and 
dag-like proof systems; however, obtaining even a linear approximation to the 
length of the shortest refutation, in either case is NP-Hard [Alekhnovich et al. 
1998]. 

(3) 2SAT formulas - A short resolution refutation (tree-like and dag-like) exists 
and the exact length of the shortest tree-like refutation can be determined in 
polynomial time. 

2.    ALGORITHMS AND COMPLEXITY 

Let C = Ci A C2 A... Cm be an unsatisfiable 2SAT formula, defined on the variable 
set X = {3:1,a;2,... ,Xn}. Note that a formula C is unsatisfiable, if and only if the 
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empty clause or D can be derived from C using resolution; further D can be derived 
from C if and only if both {xi] and {ij} can be derived from C, using resolution, 
for some variable Xi. 

Definition 2.1. The size of a tree-like refutation of an unsatisfiable formula C 
is the number of clauses in the tree-like refutation of C; the shortest tree-like 
refutation of C is the tree-like refutation having the fewest number of clauses. 

Observe that converting a dag-like refutation to a tree-like refutation may in- 
crease the size of the refutation. 

For every 2SAT formula C, there exists an implication graph Gc; see [Aspvall 
et al. 1979] for the details of constructing Gc from C. 

THEOREM 2.2. The 2SAT formula C is unsatisfiable if and only if there exists 
a directed path from the vertex corresponding to the literal Xi to the vertex corre- 
sponding to the complement literal fj and vice versa, in GQ- 

Proof: See [Aspvall et al. 1979]. 
Since the given formula C is unsatisfiable, as per Theorem (2.2), there must exist 

one or more variables Xi, such that there is a directed closed walk (note that both 
vertices and edges can repeat) containing Xi and Xi. Each of these directed, closed 
walks provides evidence that C is unsatisfiable, in that it provides a derivation of 
D, i.e., a resolution refutation of C. A path from vertex Xi to vertex Xj in Gc 
corresponds to a resolution derivation of {xi} from C; likewise a path from vertex 
Xi to vertex Xi in Gc corresponds to a resolution derivation of {sj}. In fact, every 
candidate for a shortest resolution derivation of {xi} corresponds to tracing out a 
path from vertex xi to vertex xf, likewise for derivations of {xi}. 

LEMMA 2.3. Let Tc denote the shortest tree-like resolution refutation ofC and 
let D be derived by resolving {xi} and {xi} in Tc- Then Tc also encodes the 
shortest length tree-like proof of {xi} and the shortest length tree-like proof of {xi}. 

Proof: Since To is a tree-like refutation, we can split it into two disjoint proofs 
Tc^^S which derives {xi} and Tc"*^*, which derives {xi}. Note that the term disjoint 
does not mean that the two proofs do not have clauses in common; rather, multiple 
occurrences of the same clause are counted multiple times. Let Ti^* denote a 
shorter tree-like proof for {xi}; we could combine this proof with Tc^^S to get a 
shorter tree-like proof for □, thereby contradicting the optimality of Tc- The same 
argument holds if there exists a shorter tree-like proof for {xi}. 

The above discussion leads to the following strategy to find the shortest tree-like 
refutation of C: 

(1) For each literal pair {xi,Xi) find the shortest path from Xi to Xi of length Sj 
and the shortest path from Xi to Xi of length s'^, using BFS in time 0{m-\-n). 

(2) If both Si and s^ are finite, then the shortest tree-like refutation of C, by 
resolving on {xi} and {xi} has length /, = {si -\- (sj - 1) + s'j + {s'i - 1)). 

(3) The shortest tree-like refutation of C has length I = min"^i k, accordingly we 
choose ? so as to minimize (sj -I- s^). 

It is not hard to see that this strategy can be implemented in time 0{m-n-\-n?). 
We make the following observations: 
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(1) It is possible that the shortest path from Xi to Xi has one or more edges (clauses) 
in common with the shortest path from x, to Xi; in case of tree-like refutations, 
an edge which is used twice must be counted twice, unlike the case for dag-like 
refutations. 

(2) The shortest resolution refutation of a 2SAT formula need not be tree-like; 
the above strategy fails for dag-like refutations. In particular, the optimal 
dag-like refutation of C, need not be composed of disjoint proofs of {xi} and 
{xi}. Indeed the problem of finding the shortest dag-like refutation for an 
unsatisfiable 2SAT formula is open at this point. 
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